skip to main content


Search for: All records

Creators/Authors contains: "Tambe, Milind"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. More than 5 million children under five years die from largely preventable or treatable medical conditions every year, with an overwhelmingly large proportion of deaths occurring in under-developed countries with low vaccination uptake. One of the United Nations’ sustainable development goals (SDG 3) aims to end preventable deaths of newborns and children under five years of age. We focus on Nigeria, where the rate of infant mortality is appalling. We collaborate with HelpMum, a large non-profit organization in Nigeria to design and optimize the allocation of heterogeneous health interventions under uncertainty to increase vaccination uptake, the first such collaboration in Nigeria. Our framework, ADVISER: AI-Driven Vaccination Intervention Optimiser, is based on an integer linear program that seeks to maximize the cumulative probability of successful vaccination. Our optimization formulation is intractable in practice. We present a heuristic approach that enables us to solve the problem for real-world use-cases. We also present theoretical bounds for the heuristic method. Finally, we show that the proposed approach outperforms baseline methods in terms of vaccination uptake through experimental evaluation. HelpMum is currently planning a pilot program based on our approach to be deployed in the largest city of Nigeria, which would be the first deployment of an AIdriven vaccination uptake program in the country and hopefully, pave the way for other data-driven programs to improve health outcomes in Nigeria. 
    more » « less
  2. null (Ed.)
    Motivated by real-world deployment of drones for conservation, this paper advances the state-of-the-art in security games with signaling. The well-known defender-attacker security games framework can help in planning for such strategic deployments of sensors and human patrollers, and warning signals to ward off adversaries. However, we show that defenders can suffer significant losses when ignoring real-world uncertainties despite carefully planned security game strategies with signaling. In fact, defenders may perform worse than forgoing drones completely in this case. We address this shortcoming by proposing a novel game model that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that defenders can still perform well via a signaling strategy that exploits uncertain real-time information. For example, even in the presence of uncertainty, the defender still has an informational advantage in knowing that she has or has not actually detected the attacker; and she can design a signaling scheme to “mislead” the attacker who is uncertain as to whether he has been detected. We provide theoretical results, a novel algorithm, scale-up techniques, and experimental results from simulation based on our ongoing deployment of a conservation drone system in South Africa. 
    more » « less
  3. Spatio-temporal incident prediction is a central issue in law enforcement, with applications in fighting crimes like poaching, human trafficking, illegal fishing, burglaries and smuggling. However, state of the art approaches fail to account for evasion in response to predictive models, a common form of which is spatial shift in incident occurrence. We present a general approach for incident forecasting that is robust to spatial shifts. We propose two techniques for solving the resulting robust optimization problem: first, a constraint generation method guaranteed to yield an optimal solution, and second, a more scalable gradientbased approach. We then apply these techniques to both discrete-time and continuoustime robust incident forecasting. We evaluate our algorithms on two different real-world datasets, demonstrating that our approach is significantly 
    more » « less
  4. An important way cyber adversaries ind vulnerabilities in mod- ern networks is through reconnaissance, in which they attempt to identify coniguration speciics of network hosts. To increase un- certainty of adversarial reconnaissance, the network administrator (henceforth, defender) can introduce deception into responses to network scans, such as obscuring certain system characteristics. We introduce a novel game theoretic model of deceptive interac- tions of this kind between a defender and a cyber attacker, which we call the Cyber Deception Game. We consider both a powerful (rational) attacker, who is aware of the defender’s exact deception strategy, and a naive attacker who is not. We show that computing the optimal deception strategy is NP-hard for both types of attackers. For the case with a powerful attacker, we provide a mixed-integer linear program solution as well as a fast and efective greedy algo- rithm. Similarly, we provide complexity results and propose exact and heuristic approaches when the attacker is naive. Our exten- sive experimental analysis demonstrates the efectiveness of our approaches. 
    more » « less